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J d J
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AND SADASIVA M

Abstract LA method is presented for the anafysis of a system of

cylindrical conductors, of large but finite conductivity, situated in a uniform

dielectric and excited by an axially-independent TM electromagnetic field.

The analysis is based on separating the space into the region exterior to the

conductors and regions interior to the conductors, placing equivalent

electric and magnetic currents on the boundary surfaces, applying the

boundary conditions for the tangential fields and, hence, obtaining a system

of coupled integral equations. Due to the special geometry and the chosen

excitation, the problem treated is a two-dimensional one. we distribution

of the mrknowm surface currents is approximated by pulses, and the

amplitudes of these pukes are determined by a point-matching technique.

This method is applied to the problem of determining the inductance and

resistance of two-wire transmission lines.

I. INTRODUCTION

T HE USUAL WAY OF determining the inductance

and resistance of transmission lines, which are needed

for the quasi-TEM analysis, is by using the following

technique. As the first step, the line conductors are as-

sumed to be made of a perfectly conducting material, and

the inductance matrix is computed by inverting the capaci-

tance matrix (obtained for the case when the dielectric of

the line is a vacuum) [1]–[2]. Such an approach is only

approximate, because it does not consider the magnetic

energy stored within conductors, which can be very im-

portant at lower frequencies (towards the dc end of the

spectrum). In addition, it assumes that the proximity and

end effects are fully developed, which is, in reality, the case

only at higher frequencies, when the skin effect is pro-

nounced, thus yielding the current distribution which is not

accurate at lower frequencies. As the consequence of such a

procedure, the resulting inductance matrix is frequency

independent.

Regarding the resistance, in the conventional approach it

is obtained by perturbing the perfect-conductor case, i.e.,

by using the surface resistance of the conductor, assuming
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that the skin effect is well developed. The resistance thus

obtained is, therefore, inadequate to represent the low-

frequency behavior of the line. In the low-frequency region,

the resistance is almost frequency independent and equal

to the dc resistance, while the resistance obtained by the

perturbation technique tends to zero as the square root of

the frequency.

The problem treated in this paper is a special case of a

more general class of problems of numerically finding the

electromagnetic field in a system which consists of a num-

ber of homogeneous regions, separated by arbitrary

boundary surfaces. In other words, the medium is piece-

wise homogeneous. Generally, the equations describing

such a system can be formulated in two ways [3]. Following

the first appi-each, one has to take the volume conduction

currents, the volume magnetization and polarization cur-

rents, and the surface magnetization currents and polariza-

tion charges as the sources of the electromagnetic field.

According to the second approach, by using the electro-

magnetic-field theorems [3], [4] one can separate the space

into a number of homogeneous regions and treat one

region at a time, excluding the rest of the system by placing

equivalent electric and magnetic currents at the surfaces

bounding the regions. If the problem is solved starting

from the integral equations for the unknown source distri-

bution, the surface-current formulation is superior over the

volume formulation in having a much smaller number of

unknowns and yielding surface, rather than volume, in-

tegrals that have to be numerically evaluated. Altogether,

this results in a much more efficient computer program,

regarding both memory requirements and CPU running

time.

The equivalent surface-current approach is adopted here

for the analysis of the system sketched in Fig. 1. The

system under consideration consists of a number of cylin-

drical conductors of arbitrary cross section. Their conduc-

tivity is assumed to be large, but finite, so that the polariza-

tion current can be neglected, i.e., so that the material can

be described by the complex permi~tivity t = – jrr/a. The

material is assumed to be nonferromagnetic and homoge-

neous within each of the cylinders. The cylinders are

situated in a homogeneous, lossless dielectric, of parame-

ters c and PO, and excited by an impressed field, which is
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Fig. 1. Sketch of the analyzed system cross section.

uniform along any line parallel to the z-axis. In addition, it

is assumed that the impressed electric field is parallel to the

z-axis, while the magnetic field is transversal to it, i.e., the

excitation is of the TM type.

Such an impressed field requires certain additional clari-

fications, i.e., we have to know what is its relation to a

two-wire transmission-line case. Let us, therefore, consider

an electrically short transmission line (i.e., shorter than

about 0.01 wavelength), short-circuited at one end, and

driven by a sinusoidal ideal current generator at the other

end (see Fig. 2). The line represents an impedance as seen

from the generator, and, therefore, there is a voltage be-

tween the generator terminals, as indicated in Fig. 2. Of

course, this voltage is much smaller than would be in the

case when the line is matched rather than short-circuited,

because the line is electrically short. To the first approxi-

mation, the current along the conductors is constant. (More

precisely, it is proportional to cos kx, where k is the phase

coefficient, and x is the distance from the short circuit

towards the generator, if the line losses are relatively

small.) However, the voltage between the conductors de-

creases practically linearly along the line, and drops to zero

at the short circuit. (Again, more exactly, the voltage is

proportional to sin kx.) The voltage between the conduc-

tors (which is defined for a line cross section) is, essentially,

the integral of the electric field due to the charges induced

on the line conductors, because only these charges give a

transversal electric-field component. This field is equal to

– grad V, where V is the electric scalar-potential due to the

charges. On the other hand, the line integral of – grad V

along the path shown in Fig. 2 is zero. Since the integrals

along the lines 1–2 and 3–4 do not cancel each other (the
voltage being smaller going towards the short circuit), it

follows that there must exist a component of – grad V

along each of the conductors, and that these components

are in the direction of the current flow, i.e., opposite in the

two conductors. Of course, since the voltage is linearly

decreasing going towards the short circuit, these compo-

‘gm
Fig. 2. Sketch of an electrically short, short-circuited,
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two-wire tram-
‘mission line, driven by a generator, with the path 1-2-3-4-1 along which

the line integrat of – grad V is considered.

nents should be uniform along the line. Also, since there is

no transversal electric-field component in the conductors

(because the current has only the axial component, and the

electric-field vector is, in a conductor, always colinear with

the current-density vector), the – grad V term. is axial and

uniform over the cross section of each of the conductors.

In our model, we are going to assume that the current is

exactly uniform along the transmission-line length. There-

fore, no charge can be associated with it, according to the

continuity equation. On the other hand, we have to take

into account the field due to the charges, as discussed

above. To circumvent this difficulty, we take- the field due

to the charges as the impressed field (i.e., the fi~ld that

represents the excitation to our system). This field has, of

course, to be axial and uniform within each of the conduc-

tors. It is worth noting that such a uniform field can be

considered as produced by a uniform solenoidal sheet of

magnetic currents, wrapping each of the conductors. These

currents have only the transversal component, and the

electric field produced by them is dual to the magnetic

field produced by a similar sheet of electric currents. In the

quasi-static case considered here (i.e., the transversal di-

mension of the transmission line being much smaller than

the wavelength in a vacuum), the electric field in the

interior of a magnetic-current solenoid is practically uni-

form and axial, and it is negligible in the exterior of the

solenoid. The impressed field in our model is, finally,

computed as due to such solenoidal magnetic-current sheets,

which are, however, not sketched in Fig. 1.

II. FUNDAMENTAL EQUATIONS

Under the assumptions described in the previous section,

no quantity describing the electromagnetic field depends

on the z-coordinate, i.e., we have a two-dimensional case.

In addition, the currents induced in the conductors have

only the z-component (and, of course, their density de-

pends only on the transversal coordinates). Hence, the

divergence of these currents is zero, and there are no

volume charges in the conductors, nor are there surface

charges at the interfaces between the conductors and the

dielectric. It is not hard to see that the electric field

produced by these currents has only the z-component and
the magnetic field has only the transversal component at

any point of the system.

We are going to consider the impressed field as the field

due to any known sources. In the system considered, the

sources of the impressed field are in the dielectric. For

example, if we assume the impressed field to be a plane
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Fig. 3. Systems equivalent to the one in Fig. 1: (a) outside the conduc-
tors and (b) inside conductor #1,

electromagnetic wave, the sources are, theoretically, at in-

finity.

Let us, first, consider the electromagnetic field in the

dielectric. Using the equivalence theorem, we can exclude

the electromagnetic field in the conductors by introducing

equivalent surface electric and magnetic currents at the

conductor boundaries, as shown in Fig. 3(a). In this equiv-

alent system, the field in the dielectric remains unchanged,

as compared to the field in the original system, while the

field in the conductors is zero. The densities of the equiv-

alent currents are related to the (total) tangential electric

and magnetic fields at the surface of the conductors (i.e.,

observed in the dielectric), as

~=nx H (1)

-M~=Exn (2)

where n is the outward normal to the conductor surfaces.

The electromagnetic field in the conductors being zero, we

can now substitute the medium of the conductors by the

surrounding dielectric, thus homogenizing the medium ev-

erywhere. In such a system, the only sources of the electro-

magnetic field are the equivalent surface electric and mag-

netic currents, in addition to the sources of the impressed

field. Thus, we have at any point for the total electric and

magnetic fields

E=–juA–~curl F+E, (3)

H=– juF-grad V.+~curl A+H, (4)

where u is the angular frequency, E, and H, describe the

impressed field

A =pO~~g(r) ds (5)
s

is the magnetic vector-potential

/
F= c Af,g(r) ds (6)

s

is the electric vector-potential, and

Vm = :-.sg(r) ds (7)

is the magnetic scalar-potential. In (5)–(7) g(r ) is Green’s

function for the two-dimensional case (i.e., corresponding

to an infinitely long, straight, uniform line source), s is the

contour of the conductor cross sections, r is the distance

between the field and source points (both lying in the same

transversal plane) and p~~ is the surface magnetic-charge

density. Green’s function for this case is [3]

g(r)= – @(kr) (8)

where Hj2) is Hankel’s function of the second kind and

order zero, and k = Q= is the phase coefficient. It is

worth noting that, in the limiting quasi-static case, Green’s

function tends to – (1/2 r)log(kr).

We can now consider the electromagnetic field in the

interior of one conductor at a time. We can thereby ex-

clude the field in the dielectric and the other conductors by

wrapping the conductor by equivalent surface electric and

magnetic currents. These currents are exactly opposite to

those given by (1) and (2), as presented in Fig. 3(b).

According to the equivalence theorem, the field exterior to

the conductor is now zero, so that this exterior region can

be assumed to be filled with the material the conductor is

made of. In other words, we have now homogenized the

entire space, which enables us to use the usual expressions

for the fields and retarded potentials, (3)–(7). However, in

this case, the permittivity should be substituted by the

complex permittivity, i = – ju/ti, while Green’s function

is now

g(r)=~(ker(ly[r)+jkei(lylr) (9)

where ker and kei are Kelvin’s functions and y = ~’ ~=

is the propagation coefficient in the conductor. Also, in

this case El = O and H, = O.

The unknown distributions of electric and magnetic cur-

rents have to be determined so that the electromagnetic

field be zero in the space in Fig. 3(a) which corresponds to

the conductors in Fig. 1, and also that it be zero in the

space in fig. 3(b) which corresponds to the dielectric in Fig.

1. According to the uniqueness theorem, we can postulate

that either the electric field or the magnetic field tangential

to the boundary of the zero-field region be zero (at the side

of the boundary interior to the region). Although, theoreti-

cally, these two conditions are equivalent, our choice was

based .on the considerations that the method can cover as

broad a frequency range as possible. To that purpose, the
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frequency behavior of the terms in [3) and (4) should be
inspected for both systems of Fig. 3(a) and (b). Thereby,

the low-frequency end is more critical, because at higher

frequencies the terms in (3) and (4) are better balanced.

At lower frequencies, the term – jwl, due to a current

filament, is practically proportional to the frequency ~ to

the first power for both systems, and the terms l/c curl F

and l/pO curl A are almost frequency-independent. The

term – j@ is proportional to ~1 in the system of Fig.

3(a), while it is frequency-independent in the system of Fig.

3(b). (Note that the electric-current filament in these con-

siderations carries an axjal current, while the magnetic-cur-

rent filament carries a transversal current. In the latter

case, magnetic charges must be associated with the mag-

netic current in order to satisfy the continuity equation.)

Finally, the term grad V~ is frequency-independent for a

given line magnetic charge. However, this charge is propor-

tional with a factor l/~ to a given magnetic current.

The impressed electric field at a conductor surface is

practically uniform and frequency-independent (for a given

magnetic-current sheet). However, the impressed magnetic

field, due to the same source, is proportional to jl. In

addition, at low frequencies, the current density and, hence,

the electric field within a conductor is uniform. As a

consequence, the equivalent magnetic currents at the con-

ductor surface are of constant intensity and in phase with

the equivalent electric currents. By inspecting (4) and not-

ing that p~$ = j/ti div. M,, it can be seen that this equation

might be numerically unstable because of the great dif-

ference in magnitudes of the four terms in the system of

Fig. 3(a). Therefore, the boundary condition for the

tangential electric field was adopted for the external prob-

lem. At the same time, the system of Fig. 3(b), the curl F

term produces no field external to the magnetic-current

sheet, but this result is obtained as the sum of large,

opposite terms, which greatly exceed in magnitude the

– ju~ term. Thus, at very low frequencies, (3) might be

numerically unstable. However, in (4), a similar problem

arises because the grad V~ can be very large, unless the

magnetic currents are forced to have a uniform intensity

around the conductor boundary. Nevertheless, the

boundary condition for the tangential magnetic field was

used for the internal problem, because it was considered to

give a more natural behavior of the equivalent currents

than (3).

III. APPROXIMATE SOLUTION

In order to numerically obtain the solution to the cou-

pled equations (3) and (4), the first of them formulated for

the exterior, and the second for the interior problem, the

point-matching method was applied [5] with a piecewise

constant (i.e., pulse) approximation of the unknown distri-

butions of electric and magnetic currents. To that purpose,

each of the interfaces was divided into a number of strips,

running parallel to the z-axis, and the electric and mag-

netic currents were assumed to be uniform over each of the

strips. Note that such an approximation yields magnetic

charges only along the edges of the strips, because div. M.

= O over a strip. The matching points were allocated at
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Fig. 4. Segmentation of the boundary surfaces of the system of Fig. 1:
electric and magnetic-current pulses and matching points . for the
exterior and o 0 . for the interior problem.

middle points of the segments representing strip cross

sections at a transverse plane, as sketched in Fig. 4.

The curls in (3) and (4) were evaluated by introducing

the “curl” operator under the integrals, where they operate

on the kernels only, yielding

gradg[r) = $i, (lo)

where i, is the unit vector of the vector r.

After some simple manipulations and using the proper-

ties of Hankel’s and Kelvi~s functions, the in~egral; whch

have to be evaluated in our case are reduced to the

– juA = – j~~ J 1H(2)(kr) d(ks)
.–4 0

~curl F=– M,X ~~17/2)(kr)i,d(ks)

for the exterior problem, and

– joF= – jg/~(ker(lylr)+ jkei(lylr)) d(lylr)
Iflsr

(13)

~curlA=–fi~

forms

(11)

(12)

x’~+(ker’(lylr) +jkef(lylr)i.d( lyl~) (~4

for the interior problem. In (11)-(14), ~ and M, are

current densit~es of a strip, s is its cross section, and {

=- and {=~~{w are theintrinsicimpedarmesof

the dielectric and conductor, respectively. Regarding the

magnetic scalar-potential, its gradient is merely reduced to

the form

[
~(ker(lylr)+ jkei(lylr)i, 1

Kz

‘radvm = – 27rlfl
(15)

r=rl

where rl and r2 are the distances between the field point

and the ends of the strip cross section.

At higher frequencies, when the widths of the strips

become much greater than the skin-depth ~-, the

magnetic field at a matching point in the interior problem
is practically due only to the electric and magnetic ‘currents

in the immediate vicinity of that point, i.e., only to the

local surface currents.’ In that ~ase (4), (13), and (14)

should yield

M,/J, = f (16)

for any strip, which could be expected from the analysis of
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field penetration into a conductor at high frequencies. This

result has been verified numerically, thus checking the

integration procedure.

In order to numerically evaluate the terms in (11)-(14),

one has to be careful about the case when the field point is

on the strip, the field of which is computed, since, in that

case, the kernel in (5) and (6) has an integrable singularity.

Even more critical is the singularity in the curls of the

potentials. This problem was alleviated by subtracting from

the kernel the dominant term – l/27r log(r), which is the

same for both the exterior and interior problems. The

integrals associated with this extracted term can be

evaluated explicitly, as shown in the Appendix, while the

remainder was evaluated numerically, using the

Gauss–Legendre integration scheme of the eighth order.

Thereby, the cross section of a strip should be divided into

subsegments the length of which is, at most, equal to one

wavelength for the exterior problem, namely a few skin

depths for the interior problem, and the integration for-

mula should be applied to each of these subsections.

IV. NUMERICAL EXAMPLES

The procedure described in Sections II and III was

applied to a special case of two identical, parallel rectangu-

lar conductors, placed as sketched in Fig. 5. Each of the

conductors was assumed to be in a uniform axial impressed

field. The intensities of the impressed field for each of the

conductors, are equal, but the directions of the fields are

opposite. Such a case practically exists with an electrically

short transmission line of finite conductivity driven at one

end by a generator and short circuited at the other end.

The sources of the impressed field in this case are charges,

located at the conductor surfaces (as well as the generator

terminals). The charge density per unit length is practically

linearly diminishing from the generator toward the short

circuit. If the transverse dimensions of the line are much

smaller than the line length, the field due to the charges at

the line ends can be neglected around the middle of the

line. Also neglecting the retardation, the z-component of

the electric field at a level z due to the charges is given by

the relation

~z= - +--y-dd);(+lz’
1 z, ap 1

.—
477X Li

~ ; dsdz’
o Z1 s,

[+

1

1

22
—

4%% ,,
p&,z’)+ds (17)

=’= 21

since dr/dz = – 6b/dz’. In (17), zl and Zz are the charge
boundaries along the z-axis (zl < z < Zz), s, denotes the

contours of the conductor cross sections, and r is the

distance between the field and the source points. Obvi-

ously, the last term in (17) can be neglected if the ends (zl

and Z2) are far away from the field point. Hence, it can be

concluded that the z-component of the field due to the

charges, which can be considered as the impressed field in

Co,po I
—— 2.

t
2b

.“. ,/ ,//

Fig. 5. Cross section of a two-conductor transmission line.

our case, is of the same form as the potential due to these

charges. (Note that we are assuming the current distribu-

tion to be uniform along the conductor length, and thus no

charges can be associated with it, which is, of course, only

an approximation.) Only, instead of the charges in the

expression for the potential, we have to put the charge

derivatives with respect to the z-coordinate. As a result, the

impressed field is uniform over the cross section of one

conductor, and the directions of the impressed field are

opposite in the two conductors.

In the computer program prepared for the present analy-

sis, the impressed field was not taken to be exactly uni-

form, but rather it was taken to be due to two uniform

layers of transverse magnetic currents wrapping the two

conductors.

The impedance per unit length is defined as the ratio of

the incident electric field divided by the total current

across the cross section of the conductor. The total current

is obtained by integrating the surface-current density along

the cross-section circumference.

As the first example, the dimensions of the system

shown in Fig. 5 were adopted to be a = 1 mm, b = 0.1 mm,

and c = 0.5 mm. In this, as well as in the other case, the

conductor conductivity was 56 MS/m. In Fig. 6, the

resistance and inductance per unit length are shown versus

frequency, where R’(0) denotes the low frequency resis-

tance value. It can be seen that the resistance starts chang-
ing from the dc value when the longer side of the conduc-

tor cross section becomes a substantial fraction of the skin

depth. However, only when the shorter side becomes close

to the skin depth, the resistance exhibits the well-known

square-root behavior. At very high frequencies, the resis-

tance starts rapidly increasing. In our model, this is to be

attributed to the radiation resistance of the system. It is

worth noting that the system shown in Fig. 5 radiates

because the current distribution is uniform along the z-axis

unlike an ideal TEM transmission line, where the current

distribution is sinusoidal, and thus no radiation occurs.

The inductance does not change very much with frequency,

because of two reasons. First, the thickness of the conduc-

tors is very small, so that the internal inductance is negligi-

ble. Second, at very low frequencies, the current is uni-

formly distributed along the wider side of the conductor, as

in the dc case, but this distribution does not substantially

change at higher frequencies due to the proximity effect of

the other conductor, which opposes the edge effect.
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Fig. 6. Normalized resistance per unit length and inductance per unit
length of the two analyzed transmission lines of the form shown in Fig.
5 versus frequency. The resistances are normalized with respect to the
numerically obtained low-frequency value (R’(0)). — --- resistance
and inductance for a = 1 mm, b = 0.1 mm, and ‘c= 0.5 mm;
R’(O) =86 mQ/m; NX = 8, NY= 2. -..-, --- resistance and in&c.

tance for a = b =1 mm and c = 2 mm; R’(O)= 8.8 mL?\m; NX= NY
=8.

In order to get an insight into the stability of the present

solution, we present in Table I the resistance and induc-

tance per unit length for various numbers of subsections

along the longer and shorter sides of the conductor (NX

and NY), at three specific frequencies. At 1 kHz, we have

a low-frequency case, which is practically identical to the

dc case; at lMHz, the skin-effect is very pronounced,

while, at 1 GHz, the radiation resistance attains a substan-

tial value. It can be seen that at all three frequencies the

results do not depend significantly on the number of

subsections, and that satisfactory accuracy can be obtained

with the same low number of subsections (say, NX = 8, NY

= 2), regardless of the frequency range,

As the second example, the conductors were assumed to

be of a square cross section, i.e., a = b =1 mm, while c =

2 mm. The resistance and inductance per unit length of this
transmission line, versus frequency, are given in Table II

and sketched in Fig. 6.

From the above results, it cart be seen clearly that the

resistance remains constant and equal to the dc resistance

(the exact value is 8.93 mfl/m) up to frequencies when the

width of the conductors becomes a significant fraction of

TABLE I
RESISTANCE (R’) AND INDUCTANCE (2,’) PER I_JNIT LENGTH FOR A

TRANSMISSION LINE OF DIMENSIONS a = 1 mm, b = 0.1 mm
AND c = 0.5 mm, AT THREEFREQUENCIES,FORVARIOUS

NUMBERSOF PULSESALONG THEWIDER ( NX) AND NARROWER

(NY) SIDE OFTHECONDUCTORCROSSSECTION

NX NY ~;= 1 kHz J=l MHz ~,= 1 GHz -

(mfJ/m) (n/#m) (mQ/m) (n&m) (mt2/m) (n;jm)
22 77.98 316.7 163.1 339.0 5874 314.0
42 82.12 330.7 158.7 336:5 5640 .312.2
82 85.86 347.9 163.1 334.2 5730 311.2
84 85.34 345.7 162.2 333.9 5822 310.4

16 2 87.74 357.8 174.5 333.6 5732 310.4
16 4 87.60 357.1 175.3 333.9 5790 310.0

\

TABLE II
RESISTANCE ( R‘) AND INDUCTANCE ( L’) PER UNIT LENGTH FOR A

TRANSMISSION LINE OF DIMENSIONS a = b =1 mm AND

c = 2 mm VERSUS FREQUENCY.

f (Hz). R’ (mQ/m) L’ (nH/m)
100 8.78 586

1000 8.78 588
10000 11.02 572

100000 30.80 496
1000000 86.00 466

10000000 273.2 456
100000000 874.6 454

1000000000 7426 454

8 (m’m)
67
21
6.7
2.1
0.67
0.21
0.067
0.021

The numbers of pulses are NX = NY = 8. Skin-depth (8) is
shown for comparison.

the skin-depth. Above these frequencies, we can note the

usual square-root behatior of the resistance. The induc-

tance has a frequency region where it decreases, because

then the magnetic field in the interior of the conductors is

depleted, and the internal inductance becomes very small.

In addition, for both conductors, the centroid of the cur-

rent moves from the center of the cross section towards the

other conductor, which also reduces the inductance at

higher frequencies.

V. CONCLUSION

A procedure is presented for the numerical analysis of a

two-dimensional electromagnetic system, consisting of a

number of conductors, made of homogeneous materials,

and embedded in a homogeneous dielectric. The excitation

of the system was assumed to be uniform along the axis of

the system and of the TM nature. The problem was solved

by introducing equivalent surface electric and magnetic

currents at the interfaces between the conductors and the

dielectrics, thus obtaining a number of systems filled with a

homogeneous medium. The unknown distributions of the

electric and magnetic currents were then determined from

coupled integral equations, based on the boundary condi-

tions for the tangential electric and magnetic fields. These
equations were solved by the point-matching technique,
with pulse approximations of the unknown current distri-

butions. The numerical results obtained for the case of two

identical conductors of rectangular cross sections exhibit a

relatively good stability and behave according to the pre-

dictions, which take into accourit the proximity, edge, skin
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,
Fig. 7. Coordinate system for evahration of quasi-static potentiaf and

field integrals at a point (XO, ye).

and radiation effects. The present method can easily be

extended to the TE excitation, as well as to the analysis of

any two-dimensional electromagnetic system filled with

arbitrary piecewise homogeneous media.

APPENDIX

EVALUATION OF THE MAIN PART OF THE

FIELD INTEGRALS

For simplicity, let us consider a strip the cross section of

which is along the x-axis, as sketched in Fig. 7. In order to

compute the electric and magnetic fields from (3)–(7), one

has to evaluate the integrals the kernel of which is either

Green’s function, or its gradient. Green’s functions have a

logarithmic singularity, as already stated, so that the main

part of the singular ititegrals to be evaluated is either

– L/4rr, where

L= J:dlo,((x-xo)’+ y:)dx

[
= (X-xojlog((x-xo)’+y:)

() 1

a

X—x.
+ 2y0 arctg — –2(X– XO)

Yo
(18)

X=—*

when evaluating the integral of Green’s function, or

– l/47r( dL/dxoix + dL/’dyoiY) when evaluating the in-

tegral of grad g(r). ix and iy are unit vectors in the i and

j direction, respectively. In the latter case, we have

+= -[log((x-xo)’+y; )]a , (19)

%= Far@(W:=.a=-a ’20)
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