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Analysis of Finite Conductivity Cylindrical
Conductors Excited by Axially-Independent
TM Electromagnetic Field

ANTONIJE R. DJORDIJ EVIC, TAPAN K. SARKAR, SENIOR MEMBER, IEEE,
AND SADASIVA M. RAO, MEMBER, IEEE

Abstract —A method is presented for the analysis of a system of
cylindrical conductors, of large but finite conductivity, situated in a uniform
dielectric and excited by an axially-independent TM electromagnetic field.
The analysis is based on separating the space into the region exterior to the
conductors and regions interior to the conductors, placing equivalent
electric and magnetic currents on the boundary surfaces, applying the
boundary conditions for the tangential fields and, hence, obtaining a system
of coupled integral equations. Due to the special geometry and the chosen
excitation, the problem treated is a two-dimensional one. The distribution
of the unknewn surface currents is approximated by pulses, and the
amplitudes of these pulses are determined by a point-matching technique.
This method is applied to the problem of determining the inductance and
resistance of two-wire transmission lines.

I. INTRODUCTION

HE USUAL WAY OF determining the inductance
and resistance of transmission lines, which are needed
for the quasi-TEM analysis, is by using the following
technique. As the first step, the line conductors are as-
sumed to be made of a perfectly conducting material, and
the inductance matrix is computed by inverting the capaci-
tance matrix (obtained for the case when the dielectric of
the line is a vacuum) [1]-[2]. Such an approach is only
approximate, because it does not consider the inagnetic
energy stored within conductors, which can be very im-
portant at lower frequencies (towards the dc end of the
spectrum). In addition, it assumes that the proximity and
end effects are fully developed, which is, in reality, the case
only at higher frequencies, when the skin effect is pro-
nounced, thus yielding the current distribution which is not
accurate at lower frequencies. As the consequence of such a
procedure, the resulting inductance matrix is frequency
independent.
Regarding the resistance, in the conventional approach it
is obtained by perturbing the perfect-conductor case, i.e.,
by using the surface resistance of the conductor, assuming
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that the skin effect is well developed. The resistance thus
obtained is, therefore, inadequate to represent the low-
frequency behavior of the line. In the low-frequency region,
the resistance is almost frequency independent and equal
to the dc resistance, while the resistance obtained by the
perturbation technique tends to zero as the square root of
the frequency.

The problem treated in this paper is a special case of a
more general class of problems of numerically finding the
electromagnetic field in a system which consists of a num-
ber of homogeneous regions, separated by arbitrary
boundary surfaces. In other words, the medium is piece-
wise homogeneous. Generally, the equations describing
such a system can be formulated in two ways [3]. Following
the first approach, one has to take the volume conduction
currents, the volume magnetization and polarization cur-
rents, and the surface magnetization currents and polariza-
tion charges as the sources of the electromagnetic field.

According to the second approach, by using the electro-
magnetic-field theorems [3], [4] one can separate the space
into a number of homogeneous regions and treat one
region at a time, excluding the rest of the system by placing
equivalent electric and magnetic currents at the surfaces
bounding the regions. If the problem is solved starting
from the integral equations for the unknown source distri-
bution, the surface-current formulation is superior over the
volume formulation in having a much smaller number of
unknowns and yielding surface, rather than volume, in-
tegrals that have to be numerically evaluated. Altogether,
this results in a much more efficient computer program,
regarding both memory requirements and CPU running
time.

The equivalent surface-current approach is adopted here
for the analysis of the system sketched in Fig. 1. The
system under consideration consists of a number of cylin-
drical conductors of arbitrary cross section. Their conduc-
tivity is assumed to be large, but finite, so that the polariza-
tion current can be neglected, i.e., so that the material can
be described by the complex permittivity é = — jo/w. The
material is assumed to be nonferromagnetic and homoge-
neous within each of the cylinders. The cylinders are
situated in a homogeneous, lossless dielectric, of parame-
ters € and p,, and excited by an impressed field, which is
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Fig. 1.

Sketch of the analyzed system cross section.

uniform along any line parallel to the z-axis. In addition, it
is assumed that the impressed electric field is parallel to the
z-axis, while the magnetic field is transversal to it, i.e., the
excitation is of the TM type.

Such an impressed field requires certain additional clari-
fications, i.e., we have to know what is its relation to a
two-wire transmission-line case. Let us, therefore, consider

“an electrically short transmission line (i.e., shorter than
about 0.01 wavelength), short-circuited at one end, and

driven by a sinusoidal ideal current generator at the other

end (see Fig. 2). The line represents an impedance as seen
from the generator, and, therefore, there is a voltage be-
tween the generator terminals, as indicated in Fig. 2. Of
course, this voltage is much smaller than would be in the
case when the line is matched rather than short-circuited,
because the line is electrically short. To the first approxi-
mation, the current along the conductors is constant. (More
precisely, it is proportional to cos kx, where k is the phase
coefficient, and x is the distance from the short circuit
towards the generator, if the line losses are relatively
small.) However, the voltage between the conductors de-
creases practically linearly along the line, and drops to zero
at the short circuit. (Again, more exactly, the voltage is
proportional to sin kx.) The voltage between the conduc-
tors (which is defined for a line cross section) is, essentially,
the integral of the electric field due to the charges induced
on the line conductors, because only these charges give a
transversal electric-field component. This field is equal to
—grad V, where V is the electric scalar-potential due to the
charges. On the other hand, the line integral of —gradV
along the path shown in Fig. 2 is zero. Since the integrals
along the lines 1-2 and 3-4 do not cancel each other (the
voltage being smaller going towards the short circuit), it
follows that there must exist a component of —gradV
along each of the conductors, and that these components
are in the direction of the current flow, i.e., opposite in the
two conductors. Of course, since the voltage is linearly
decreasing going towards the short circuit, these compo-
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Fig. 2. Sketch of an electrically short, short-circuited, two-wire trans-
mission line, driven by a generator, with the path 1-2-3-4-1 along which
the line integral of —gradV is considered.

nents should be uniform along the line. Also, since there is
no transversal electric-field component in the conductors
(Because the current has only the axial component, and the
electric-field vector is, in a conductor, always colinear with
the current-density vector), the —gradV term.is axial and

 uniform over the cross section of each of the conductors.

In our model, we are going to assume that the current is
exactly uniform along the transmission-line length. There-
fore, no charge can be associated with it, according to the
continuity equation. On the other hand, we have to take
into account the field due to the charges, as discussed
above. To circumvent this difficulty, we take-the field due
to the charges as the impressed field (i.e.; the field that
represents the. excitation to our system). This field has, of

-course, to be axial and uniform within each of the conduc-

tors. It is worth noting that such a uniform field can be
considered as produced by a uniform solenoidal sheét of
magnetic currents, wrapping each of the conductors. These
currents have only the transversal component, and the
electric field produced by them is dual to the magnetic
field produced by a similar sheet of electric currents. In the
quasi-static case considered here (i.e., the transversal di-
mension of the transmission line being much smaller than
the wavelength in a vacuum), the electric field in the
interior of a magnetic-current solenoid is practically ‘uni-
form and axial, and it is negligible in the exterior of the
solenoid. The impressed field in our model is, finally,
computed as due to such solenoidal magnetic-current sheets,
which are, however, not sketched in Fig. 1.

II. FUNDAMENTAL EQUATIONS

Under the assumptions described in the previous section,
no quantity describing the electromagnetic field depends
on the z-coordinate, i.e., we have a two-dimensional case.
In addition, the currents induced in the conductors have
only the z-component (and, of course, their density de-
pends only on the transversal coordinates). Hence, the
divergence of these currents is zero, and there are no
volume charges in the conductors, nor are there surface
charges at the interfaces between the conductors and the
dielectric. It is not hard to see that the electric field
produced by these currents has only the z-component and
the magnetic field has only the transversal component at
any point of the system.

We are going to consider the impressed field as the field
due to any known sources. In the system considered, the
sources of the impressed field are in the dielectric. For
example, if we assume the impressed field to be a plane
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Fig. 3. Systems equivalent to the one in Fig. 1: (a) outside the conduc-

tors and (b) inside conductor #1.

electromagnetic wave, the sources are, theoretically, at in-
finity.

Let us, first, consider the electromagnetic field in the
dielectric. Using the equivalence theorem, we can exclude
the electromagnetic field in the conductors by introducing
equivalent surface electric and magnetic currents at the
conductor boundaries, as shown in Fig. 3(a). In this equiv-
alent system, the field in the dielectric remains unchanged,
as compared to the field in the original system, while the
field in the conductors is zero. The densities of the equiv-
alent currents are related to the (total) tangential electric
and magnetic fields at the surface of the conductors (i.e.,
observed in the dielectric), as

J=nXxH (1)
-M,=EXn (2)
where # is the outward normal to the conductor surfaces.
The electromagnetic field in the conductors being zero, we
can now substitute the medium of the conductors by the
surrounding dielectric, thus homogenizing the medium ev-
erywhere. In such a system, the only sources of the electro-
magnetic field are the equivalent surface electric and mag-
netic currents, in addition to the sources of the impressed
field. Thus, we have at any point for the total electric and
magnetic fields

1
E=— jod—_curl F+E, (3)

H=—ij—,grade+‘uicur1A+H, (4)
0

where w is the angular frequency, E, and H, describe the
impressed field

A=po [dg(r) ds (5)
is the magnetic vector-potential

F=e_/s‘Msg(r) ds (6)

is the electric vector-potential, and

V== fones(r) ds (7
Mo s

is the magnetic scalar-potential. In (5)—(7) g(r) is Green’s
function for the two-dimensional case (i.e., corresponding
to an infinitely long, straight, uniform line source), s is the
contour of the conductor cross sections, r is the distance
between the field and source points (both lying in the same
transversal plane) and p,,, is the surface magnetic-charge
density. Green’s function for this case is [3]

g(r) =~ THO(kr) ®)

where H{® is Hankel’s function of the second kind and
order zero, and k= “’\/2170 is the phase coefficient. It is
worth noting that, in the limiting quasi-static case, Green’s
function tends to —(1/27)log(kr).

We can now consider the electromagnetic field in the
interior of one conductor at a time. We can thereby ex-
clude the field in the dielectric and the other conductors by
wrapping the conductor by equivalent surface electric and
magnetic currents. These currents are exactly opposite to
those given by (1) and (2), as presented in Fig. 3(b).
According to the equivalence theorem, the field exterior to
the conductor is now zero, so that this exterior region can
be assumed to be filled with the material the conductor is
made of. In other words, we have now homogenized the
entire space, which enables us to use the usual expressions
for the fields and retarded potentials, (3)—(7). However, in
this case, the permittivity should be substituted by the
complex permittivity, € = — jo/w, while Green’s function
is now

g(r) = 5= (ker(fylr) + jkei(ir) — (9)

where ker and kei are Kelvin’s functions and y = ﬁ VRTINS
is the propagation coefficient in the conductor. Also, in
this case E,=0 and H,=0.

The unknown distributions of electric and magnetic cur-
rents have to be determined so that the electromagnetic
field be zero in the space in Fig. 3(a) which corresponds to
the conductors in Fig. 1, and also that it be zero in the
space in fig. 3(b) which corresponds to the dielectric in Fig.
1. According to the uniqueness theorem, we can postulate
that either the electric field or the magnetic field tangential
to the boundary of the zero-field region be zero (at the side
of the boundary interior to the region). Although, theoreti-
cally, these two conditions are equivalent, our choice was
based .on the considerations that the method can cover as
broad a frequency range as possible. To that purpose, the
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frequency behavior of the terms in (3) and (4) should be
inspected for both systems of Fig. 3(a) and (b). Thereby,
the low-frequency end is more critical, because at higher
frequencies the terms in (3) and (4) are better balanced.

At lower frequencies, the term — jwA, due to a current
filament, is practically proportional to the frequency f to
the first power for both systems, and the terms 1/¢curl F
and 1/p curl 4 are almost frequency-independent. The
term — jwF is proportional to f' in the system of Fig.
3(a), while it is frequency-independent in the system of Fig.
3(b). (Note that the electric-current filament in these con-
siderations carries an axial current, while the magnetic-cur-
rent filament carries a transversal current. In the latter
case, magnetic charges must be associated with the mag-
netic current in order to satisfy the continuity equation.)
Finally, the term gradV,, is frequency-independent for a
given line magnetic charge. However, this charge is propor-
tional with a factor 1/f to a given magnetic current.

The impressed electric field at a conductor surface is
practically uniform and frequency-independent (for a given
magnetic-current sheet). However, the impressed magnetic
field, due to the same source, is proportional to fl. In
addition, at low frequencies, the current density and, hence,
the electric field within a conductor is uniform. As a
consequence, the equivalent magnetic currents at the con-
ductor surface are of constant intensity and in phase with
the equivalent electric currents. By inspecting (4) and not-
ing that p,,. = j/wdiv, M,, it can be seen that this equation
might be numerically unstable because of the great dif-
ference in magnitudes of the four terms in the system of
Fig. 3(a). Therefore, the boundary condition for the
tangential electric field was adopted for the external prob-
lem. At the same time, the system of Fig. 3(b), the curl F
term produces no field external to the magnetic-current
sheet, but this result is obtained as the sum of large,
opposite terms, which greatly exceed in magnitude the
— jwA term. Thus, at very low frequencies, (3) might be
numerically unstable. However, in (4), a similar problem
arises because the gradV,, can be very large, unless the
magnetic currents are forced to have a uniform intensity
around the conductor boundary. Nevertheless, the
boundary condition for the tangential magnetic field was
used for the internal problem, because it was considered to
give a more natural behavior of the equivalent currents
than (3).

IIL.

In order to numerically obtain the solution to the cou-
pled equations (3) and (4), the first of them formulated for
the exterior, and the second for the interior problem, the
point-matching method was applied [5] with a piecewise
constant (i.e., pulse) approximation of the unknown distri-
butions of electric and magnetic currents. To that purpose,
each of the interfaces was divided into a number of strips,
running parallel to the z-axis, and the electric and mag-
netic currents were assumed to be uniform over each of the
strips. Note that such an approximation yields magnetic
charges only along the edges of the strips, because div, M,
=0 over a strip. The matching points were allocated at

APPROXIMATE SOLUTION
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Fig. 4. Segmentation of the boundary surfaces of the system of Fig. 1:
electric and magnetic-current pulses and matching points --- for the
exterior and ¢ o o for the interior problem.

middle points of the segments representing strip cross
sections at a transverse plane, as sketched in Fig. 4.

The curls in (3) and (4) were evaluated by introducing
the “curl” operator under the integrals, where they operate
on the kernels only, yielding ‘

ag .
grad g(r) = d—fl, (10)

where i, is the unit vector of the vector r.

After some simple manipulations and using the proper-
ties of Hankel’s and Kelvin’s functions, the integrals which
have to be evaluated in our case are reduced to the forms

- jod == jtd, [~ LEP(kr) d(ks) (1)

(12)

1 - L HO(kri
_ curl F= MXX'[S"'HI (kr)i, d(ks)
for the exterior problem, and
. M, 1 o
- JjoF=— Jmfxz,” (ker (|y|r)+ jkei(jv|r)) d(Jvir)

(13)

Lcur1A=—‘/j—'Js
Ko

x‘j;-i};(ker'(|y|r)+ Jkei' (lylr)i, d(lylr) (14)

for the interior problem. In (11)-(14), J, and M, are
current densities of a strip, s is its cross section, and ¢
=,/to/€ and $= \/}- J@p /o are the intrinsic impedances of
the dielectric and conductor, respectively. Regarding the
magnetic scalar-potential, its gradient is merely reduced to
the form

) ¢

gradV, = — [ ] (ker(Jy|r)+ jkei(jyir)i, (15)

27§
where r, and r, are the distances between the field point
and the ends of the strip cross section.

At higher frequencies, when the widths of the strips
become much greater than the skin-depth {2/wp o0, the
magnetic field at a matching point in the interior problem
is practically due only to the electric and magnetic currents
in the immediate vicinity of that point, i.e., only to the
local surface currents. In that case (4), (13), and (14)
should yield

r=rn

M, )] =¢ (16)

for any strip, which could be expected from the analysis of
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field penetration into a conductor at high frequencies. This
result has been verified numerically, thus checking the
integration procedure. )

In order to numerically evaluate the terms in (11)-(14),
one has to be careful about the case when the field point is
on the strip, the field of which is computed, since, in that
case, the kernel in (5) and (6) has an integrable singularity.
Even more critical is the singularity in the curls of the
potentials. This problem was alleviated by subtracting from
the kernel the dominant term —1/2# log(#), which is the
same for both the exterior and interior problems. The
integrals associated with this extracted term can be
evaluated explicitly, as shown in the Appendix, while the
remainder was evaluated numerically, using the
Gauss—Legendre integration scheme of the eighth order.
Thereby, the cross section of a strip should be divided into
subsegments the length of which is, at most, equal to one
wavelength for the exterior problem, namely a few skin
depths for the interior problem, and the integration for-
mula should be applied to each of these subsections.

IV. NUMERICAL EXAMPLES

The procedure described in Sections II and III was
applied to a special case of two identical, parallel rectangu-
lar conductors, placed as sketched in Fig. 5. Each of the
conductors was assumed to be in a uniform axial impressed
field. The intensities of the impressed field for each of the
conductors are equal, but the directions of the fields are
opposite. Such a case practically exists with an electrically
short transmission line of finite conductivity driven at one
end by a generator and short circuited at the other end.
The sources of the impressed field in this case are charges,
located at the conductor surfaces (as well as the generator
terminals). The charge density per unit length is practically
linearly diminishing from the generator toward the short
circuit. If the transverse dimensions of the line are much
smaller than the line length, the field due to the charges at
the line ends can be neglected around the middle of the
line. Also neglecting the retardation, the z-component of
the electric field at a level z due to the charges is given by
the relation

1
47e,

22 ’ a 1 ’
E, =~ j;l Srps(s,z)az(r)dsdz

_ 1 Z2 8ps
"~ dae, f~’1 s, 027

1 dsdz’
,

{(17)

since dr/dz = — dr/3z’. In (17), z; and z, are the charge
boundaries along the z-axis (z; <z <z,), s, denotes the
contours of the caonductor cross sections, and r is the
distance between the field and the source points. Obvi-
ously, the last term in (17) can be neglected if the ends (z,
and z,) are far away from the field point. Hence, it can be
concluded that the z-component of the field due to the
charges, which can be considered as the impressed field in
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Cross section of a two-conductor transmission line.

Fig. 5.

our case, is of the same form as the potential due to these
charges. (Note that we are assuming the current distribu-
tion to be uniform along the conductor length, and thus no
charges can be associated with it, which is, of course, only
an approximation.) Only, instead of the charges in the
expression for the potential, we have to put the charge
derivatives with respect to the z-coordinate. As a result, the
impressed field is uniform over the cross section of one
conductor, and the directions of the impressed field are
opposite in the two conductors.

In the computer program prepared for the present analy-
sis, the impressed field was not taken to be exactly uni-
form, but rather it was taken to be due to two uniform
layers of transverse magnetic currents wrapping the two
conductors.

The impedance per unit length is defined as the ratio of
the incident electric field divided by the total current
across the cross section of the conductor. The total current
is obtained by integrating the surface-current density along
the cross-section circumference.

As the first example, the dimensions of the system
shown in Fig. 5 were adopted to be ¢ =1 mm, b =0.1 mm,
and ¢=10.5 mm. In this, as well as in the other case, the
conductor conductivity was 56 MS/m. In Fig. 6, the
resistance and inductance per unit length are shown versus
frequency, where R’(0) denotes the low frequency resis-
tance value. It can be seen that the resistance starts chang-
ing from the dc value when the longer side of the conduc-
tor cross section becomes a substantial fraction of the skin
depth. However, only when the shorter side becomes close
to the skin depth, the resistance exhibits the well-known
square-root behavior. At very high frequencies, the resis-
tance starts rapidly increasing. In our model, this is to be
attributed to the radiation resistance of the system. It is
worth noting that the system shown in Fig. 5 radiates
because the current distribution is uniform along the z-axis
unlike an ideal TEM transmission line, where the current
distribution is sinusoidal, and thus no radiation occurs.
The inductance does not change very much with frequency,
because of two reasons. First, the thickness of the conduc-
tors is very small, so that the internal inductance is negligi-
ble. Second, at very low frequencies, the current is uni-
formly distributed along the wider side of the conductor, as
in the dc case, but this distribution does not substantially
change at higher frequencies due to the proximity effect of
the other conductor, which opposes the edge effect.
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Fig. 6. Normalized resistance per unit length and inductance per unit
lenigth of the two analyzed transmission lines of the form shown in Fig.
5 versus frequency. The resistances are normalized with respect to the
numerically obtained low-frequency value ( R’(0)). --- resistance
and inductance for ¢=1 mm, 5=0.1 mm, and c—05 mm;
R(0)=86 mQ/m; NX=8, NY=2 --.- --. resistance and mduc-
tance for ¢ =b=1 mm and ¢=2 mm; R’(0)=13.8 m/m; NX=NY
=8.

In order to get an insight into the stability of the present
solution, we present in Table I the resistance and induc-
tance per unit length for various numbers of subsections
along the longer and shorter sides of the conductor (NX
and NY), at three specific frequencies. At 1 kHz, we have
a low-frequency case, which is practically identical to the
dc case; at 1MHZ, the skin-effect is very pronounced,
while, at 1 GHz, the radiation resistance attains a substan-
tial value. It can be seen that at all three frequencies the
~results do not depend significantly on the number of
subsections, and that satisfactory accuracy can be obtained
with the same low number of subsections (say, NX=8, NY
= 2), regardless of the frequency range.

As the second example, the conductors were assumed to
be of a square cross section, i.e., a=b=1 mm, while c=
2 mm. The resistance and inductance per unit length of this
transmission line, versus frequency, are given in Table 11
and sketched in Fig. 6.

From the above results, it can be seen clearly that the
resistance remains constant and equal to the dc resistance
(the exact value is 8.93 mf2 /m) up to frequencies when the
width of the conductors becomes a significant fraction of
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o TABLEI
RESISTANCE ( R’) AND INDUCTANCE ( L’) PER UNIT LENGTH FOR A
TRANSMISSION LINE OF DIMENSIONS ¢ =1 mm, b= 0.1 mm
AND ¢ = 0.5 mm, AT THREE FREQUENCIES, FOR VARIOUS
- NUMBERS OF PULSES ALONG THE WIDER (NX) AND NARROWER
(NY) SIDE OF THE CONDUCTOR CROSS SECTION

folMH: /=

NX NY f=1kHz 1 GHz
R’ L R’ L R’ L
(mQ/m) @H/m) @O/m) @H/m) @m2/m) @H/m)
2 2
4 2 82 12 330.7 158.7 336.5 5640 _31242
g8 2 85.86 3479 163.1 334.2 5730 . 311.2
8 4 85.34 345.7 162.2 3339 5822 3104
16 2 87.74 357.8 174.5 3336 5732 310.4
16 4 87.60 3571 1753 ° 3339 5790 310.0
TABLE II

RESISTANCE (R’) AND INDUCTANCE ( L") PER UNIT LENGTH FOR A
TRANSMISSION LINE OF DIMENSIONS @ = b =1 mm AND
¢ = 2 mm VERSUS FREQUENCY.

f (Hz). R’ (mQ/m) L (nH/m) & (mm)
100 8.78 586 7
1000 8.78 588 21
10 000 11.02 572 6.7
100 000 - 30.80 496 ‘ 2.1
1 000 000 86.00 466 0.67
10 000 000 273‘2 456 0.21
100 000 000 874.6 454 0.067
1 000 000 000 7426 454 0.021

The numbers of pulses are NX NY=38. Skln-depth (8) is
shown for comparison.

the skin-depth. Above these frequencies, we can note the
usual square-root behavior of the resistance. The induc-
tance-has a frequency region where it decreases, because
then the magnetic field in the interior of the conductors is
depleted, and the internal inductance becomes very small.
In addition, for both conductors, the centroid of the cur-
rent moves from the center of the cross section towards the
other conductor, which also reduces the inductance at
higher frequencies.

V: CONCLUSION

A procedure is presented for the numerical analysis of a
two-dimensional electromagnetic system, consisting of a
number of conductors, made of homogeneous materials,
and embedded in a homogeneous dielectric. The excitation
of the system was assumed to be uniform along the axis of
the system and of the TM nature. The problem was solved
by introducing equivalent surface electric and magnetic

“currents at the interfaces between the conductors and the

dielectrics, thus obtaining a number of systems filled with a
homogeneous medium. The unknown distributions of the

~electric and magnetic currents were then determined from

coupled integral equations, based on the boundary condi-
tions for the tangential electric and magnetic fields. These
equations were solved by the point-matching technique,
with pulse approximations of the unknown current distri-
butions. The numerical results obtained for the case of two

" identical conductors of rectangular cross sections exhibit a

relatively good stability and behave according to the pre-
dictions, which take into accourt the proximity, edge, skin
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n

Fig. 7. Coordinate syster for evaluation of quasi-static potential and
field integrals at a point (xq, 3;)-

and radiation effects. The present method can easily be
extended to the TE excitation, as well as to the analysis of
any two-dimensional electromagnetic system filled with
arbitrary piecewise homogeneous media.

APPENDIX
EVALUATION OF THE MAIN PART OF THE
FIELD INTEGRALS

For simplicity, let us consider a strip the cross section of
which is along the x-axis, as sketched in Fig. 7. In order to
compute the electric and magnetic fields from (3)—(7), one
has to evaluate the integrals the kernel of which is either
Green’s function, or its gradient. Green’s functions have a
logarithmic singularity, as already stated, so that the main
part of the singular integrals to be evaluated is either
— L /47, where

L= fjalog((x —x5)’+ yoz) dx

- (o5 5072

a

0)—-2(x - xo)] (18)

+2y0arctg(x—

x=—a

when evaluating the integral of Green’s function, or
—1/4m(dL/dxi,+ L/dy,i,) when evaluating the in-
tegral of grad g(r). i, and i, are unit vectors in the % and
y direction, respectively. In the latter case, we have

g—,f; =7 [log((x —x0)2+ )’02)]Z=Aaa

JdL (x'—xO)J”
—— = |2arct, .
9o [ & Yo x=—a
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